Geoengineering: Integrated approaches and impacts

Projektin tiedot


China's main solar geoengineering research program funded by the Chinese Ministry of Science and Technology. The project was a consortium of Beijing Normal University, Zhejian University and Chinese Academy of Social Science.
There are 3 main focus areas: 1) basic science of geoengineering applying process-based models focussed on particular impacts or aspects of the climate system.2) Experiments using earth System Models such as BNU-ESM to explore global impacts on climate and its sub-systems 3) socio-governance aspects applied to both China and whole globe.

Tärkeimmät tulokset

We developed the idea of conserving the ice sheets, thus preventing large sea level rises, by pro-actively engineering them. We showed in a Nature Comment piece and with modelling already published and underway that changing the bathymetry in front of large glaciers in Greenland and Antarctica can stabilize the ice on land. The approaches begin with computer studies, then lab work planned with engineers (e.g. at UBC, Canada and Finland), then to engage and co-designs with Greenlandic communities, and finally, after 2 or more decades, to difficult projects in Antarctica. We showed that the ideas have scientific credibility by using state of the art modelling studies, we are developing new modeling tools to study the subglacial sediment hydrology, and water flow in front of, and beneath the major ice sheet outlet glaciers.
Targeted geoengineering aimed at minimizing particular impacts from climate change is becoming a major focus of the geoengineering research community because agreement on how to govern application of global solar radiation management is highly problematic and little or no progress has been made in many years. Sea level rise is the most damaging impact of climate change, with costs of coastal protection expected to be around 50 billion USD per year by 2100. Costs of engineering to conserve the ice sheets are likely to be 10% of that, and benefit all countries thus it is globally equitable, and gives long lasting transgenerational security. The ideas generated great interest in the scientific community, and in popular media (Nature Comment, articles in major newspapers and magazines, presentations to the EU parliament, US National Academy of Sciences, various ambassadors and presidents, etc). Ice sheet conservation is called for legally under both the Precautionary Approach and the Rio Principle of differentiated but shared responsibilities among states.

1)Cheng, W., et al., Simulated climate effects of desert irrigation geoengineering. SCIENTIFIC REPORTS, 2017. 7 (46443) (第一标注)
2)Dongxinlin Ph.D. thesis
3)Gao, C.C. and Y.J. Gao, Revisited Asian Monsoon Hydroclimate Response to Volcanic Eruptions. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018. 123(15): p. 7883-7896. (第一标注)
4)Gao, C. C., et al., Reconciling multiple ice-core volcanic histories: The potential of tree-ring and documentary evidence, 670-730 CE. QUATERNARY INTERNATIONAL, 2016. 394: p. 180-193. (第一标注)
5)Gao, C.C. and C. Gao, European hydroclimate response to volcanic eruptions over the past nine centuries. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2017. 37(11): p. 4146-4157. (第二标注)
6)Gao, C.C., Gao, Y., Q. Zhang and C. Shi, Climate Aftermath of the 1815 Tambora Eruption in China. 气象学报(英文版), 2017. 31(1): p. 28-38. (第二标注)
7)Gao C, Volcanic monsoon influence revealed from multi-proxy evidence, PAGES, 2015, 23:58-59. (第一标注)
8)Duan, L., et al., Climate Response to Pulse Versus Sustained Stratospheric Aerosol Forcing. GEOPHYSICAL RESEARCH LETTERS, 2019. 46(15): p. 8976-8984. (第一标注)
9)Stevenson, S., et al., Role of eruption season in reconciling model and proxy responses to tropical volcanism. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017. 114(8): p. 1822-1826. (第二标注)
10)Cao, L., C. Gao and L. Zhao, Geoengineering: Basic science and ongoing research efforts in China. ADVANCES IN CLIMATE CHANGE RESEARCH, 2015. 6(3-4): p. 188-196. (第一标注)
11)Cao, L., et al., Fast and slow climate responses to CO2 and solar forcing: A linear multivariate regression model characterizing transient climate change. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015. 120(23). (第一标注)
12)Cao, L., et al., Simulated long-term climate response to idealized solar geoengineering. GEOPHYSICAL RESEARCH LETTERS, 2016. 43(5): p. 2209-2217. (第一标注)
13)Cao, L. and J. Jiang, Simulated Effect of Carbon Cycle Feedback on Climate Response to Solar Geoengineering. GEOPHYSICAL RESEARCH LETTERS, 2017. 44(24): p. 12484-12491. (第一标注)
14)Duan, L., et al., Climate Response to Pulse Versus Sustained Stratospheric Aerosol Forcing. GEOPHYSICAL RESEARCH LETTERS, 2019. 46(15): p. 8976-8984. (第一标注)
15)Duan, L., et al., Comparison of the Fast and Slow Climate Response to Three Radiation Management Geoengineering Schemes. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018. 123(21): p. 11980-12001.
16)Cao, L. and J. Jiang, Simulated Effect of Carbon Cycle Feedback on Climate Response to Solar Geoengineering. GEOPHYSICAL RESEARCH LETTERS, 2017. 44(24): p. 12484-12491. (第一标注
17)Jiang, J., H. Zhang and L. Cao, Simulated effect of sunshade solar geoengineering on the global carbon cycle. SCIENCE CHINA-EARTH SCIENCES, 2018. 61(9): p. 1306-1315. (第一标注)
18)Cao, L., The Effects of Solar Radiation Management on the Carbon Cycle. CURRENT CLIMATE CHANGE REPORTS, 2018. 4(1): p. 41-50. (第一标注)
19)温作龙, 姜玖与曹龙, 太阳辐射管理地球工程对海洋酸化影响的模拟研究. 气候变化研究进展, 2019. 15(01): 第41-53页. (第一标注)

20)Cao, L., et al., Simultaneous stabilization of global temperature and precipitation through cocktail geoengineering. GEOPHYSICAL RESEARCH LETTERS, 2017. 44(14): p. 7429-7437. (第一标注)

21.Moore J. C., A. Grinsted, X. Guo, X. Yu, S. Jevrejeva, A. Rinke, X. Cui, B. Kravitz, A. Lenton, S. Watanabe, D. Ji, 2015: Atlantic hurricane surge response to geoengineering. Proceedings of the National Academy of Sciences, 112, 13794-13799, doi:10.1073/pnas.1510530112. (IF=9.6)
22.Moore, J. C., X. Cui, Y. Chen, W. Yuan, W. Dong, Y. Gao, P. Shi, 2016: Will China be the first to initiate climate engineering? Earth’s Future, doi:10.1002/2016EF000402. (IF=5.8)
23.Jevrejeva, S., L. P. Jackson, R.E.M. Riva, A. Grinsted J. C. Moore, 2016: Coastal sea level rise with warming above 2 °C. Proceedings of the National Academy of Sciences, 113 (47) 13342-13347, doi:10.1073/pnas.1605312113. (IF=9.6)
24.Hong, Y., J. C. Moore, S. Jevrejeva, D. Ji, S. Phipps, A. Lenton, S. Tilmes, S. Watanabe, L. Zhao, 2017: Impact of the GeoMIP G1 sunshade geoengineering experiment on the Atlantic Meridional Overturning Circulation. Environmental Research Letters, 12 (3) 034009, doi:10.1088/1748-9326/aa5fb8. (IF=6.2)
25.Guo, A. J.C. Moore, D. Ji, 2018: Tropical atmospheric circulation response to the G1 sunshade geoengineering radiative forcing experiment. Atmospheric Chemistry and Physics, 18, 8689-8706, doi:10.5194/acp-18-8689-2018. (IF=5.7)
26.Wei L., Ji, D.*, Miao C. and et al., 2018: Global streamflow and flood response to stratospheric aerosol geoengineering. Atmos. Chem. Phys., 18, 16033–16050. (IF=5.509)
27.Ji, D., S. Fang, C.L. Curry, H. Kashimura, S. Watanabe, J. N. S. Cole, A. Lenton, H. Muri, B. Kravitz and J.C. Moore, 2018: Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering. Atmospheric Chemistry and Physics, 18, 10133-10156, doi:10.5194/acp-18-10133-2018. (IF=5.509)
28.Wang, Q., J.C. Moore, D. Ji, 2018: A statistical examination of the effects of stratospheric sulphate geoengineering on tropical storm genesis. Atmospheric Chemistry and Physics 18, 9173-9188, doi:10.5194/acp-18-9173-2018. (IF=5.5)
29.Liu X., Tian G., Feng J., Wang J., Kong L., 2018: Assessing summertime urban warming and the cooling efficacy of adaptation strategy in the Chengdu-Chongqing metropolitan region of China. Science of the Total Environment, 610, 1092-1102. ISSN: 0048-9697. (IF=4.9)
30.Ma B., Tian G., Kong L., Liu X., 2018: How China’s linked urban-rural construction land policy impacts rural landscape patterns: a simulation study in Tianjin, China. Landscape Ecology, 33, 1417-1434. ISSN:0921-2973. (IF=3.833)
31.Wolovick, M and J.C. Moore, 2018: Stopping the Flood: Could We Use Targeted Geoengineering to Mitigate Sea Level Rise. The Cryosphere 12, 2955-2967, doi:10.5194/tc-12-2955-2018. (IF=4.8)
32.Tian G., Ma B., Xu X., Liu X., Xu L., Liu X., Xiao L., Kong L., 2016: Simulation of urban expansion and croachment using cellular automata and multi-agent system model-A case study of Tianjin metropolitan region, China. Ecological Indicators, 439-450. ISSN: 1470-160X. (IF=3.19)
33.Tian G., Kong L., Liu X., Yuan W., 2018: The spatio-temporal dynamic pattern of rural domestic solid waste discharge of China and its challenges. Environmental Science and Pollution Research, 25(10), 10115-10125. (IF=2.8)
34.Liu X., Tian G., Feng J., Ma B., Wang J., Kong L., 2018: Modelling the warming impact of urban land expansion on hot weather using the Weather Research and Forecasting Model: A case study of Beijing, China. Advances in Atmospheric Sciences, 35, (IF=2.715)
35.Liu X., Tian G., Jiang D., Zhang C., Kong L., 2016: Cadmium distribution and contamination in Chinese paddy soils on national scale. Environmental Science and Pollution Research, 1-12, DOI:10.1007/s11356-016-6968-7. (IF=2.76)
36.Tian G., Liu X., Kong L., 2018: Spatiotemporal patterns and cause analysis of PM2.5 concentrations in Beijing, China. Advances in Meteorology, article ID 1724872, 8 pages. (IF=1.107)
37.Tian G., Xu X., Liu X., Kong L., 2016: The comparison and modeling of the driving factors of urban expansion for thirty-five big cities in the three regions in China. Advances in Meteorology, Article ID 3109396, 9 pages. ( IF=1.107.)
38.Z. Zhang, D. Huisingh, M Song, 2019: Exploitation of trans-Arctic maritime transportation, Journal of Cleaner Production, 212, 960-973. (IF=6.4)
39.Y. Chen, A. Liu, Z. Zhang, C Hope, J. Crabbe, 2019: Economic losses of carbon emissions from circum-Arctic permafrost regions under RCP-SSP scenarios, Science of the Total Environment, 658, 1064-1068. (IF=5.6)
40.Z. Zhang, A. Jones, J. Crabbe, 2018: Impacts of Stratospheric Aerosol Geoengineering Strategy on Caribbean Coral Reefs. Int J. Climate Change Strategies and Management, 10, 523-532.
41.Z. Zhang, A. Rinke, J. C. Moore, 2016: Review of permafrost change on the Tibetan Plateau under climatic warming since 1950s, Maejo Int. J. Sci Tech, 10, 242-255.
42.孔令强,田光进,柳晓娟. 中国城市生活固体垃圾排放时空特征. 中国环境科学,2017,37(4):1408-1417. (CSCD, EI). ISSN:1000-6923.

43.NC1 Moore, J.C., R. Gladstone, T. Zwinger, M. Wolovick, 2018, Geoengineer polar glaciers to slow sea level rise, Nature 555, 303-305
44.NC2 Rahman, A., P. Artaxo, A. Asrat, A. Parker, T. Dasgupta, A. Ghosh, A. Hathayatham, R. Lasco, P. Lefale, J.C. Moore, A. Qaiyum Suleri, N. Torto 2018, Developing countries must lead on solar geoengineering research, Nature 556, 22-24
45.Yu. X, J. C. Moore, X. Cui, A. Rinke, D. Ji, B. Kravitz and J-H. Yoon 2015, Impacts, effectiveness and regional inequalities of the GeoMIP G1 to G4 solar radiation management scenarios, Global and Planetary Change 129, 10-22 doi:10.1016/j.gloplacha.2015.02.010

46.Huisingh, D., Z. Zhang , J. C. Moore,, Q. Qiao , Q. Li 2015, Recent Advances in Carbon Emissions Reduction: Policies, Technologies, Monitoring, Assessment and Modeling, Journal of Cleaner Production 103,1-12, doi:10.1016/j.jclepro.2015.04.098

47.Kravitz, B., A. Robock, S. Tilmes, O. Boucher, J.M. English, P.J. Irvine, A. Jones, M.G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemeier, S.J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, S. Watanabe 2015, The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation Design and Preliminary Results, Geoscientific Model Development 8, 3379–3392, doi:10.5194/gmd-8-3379-2015.

48.Wei, T., W. Dong, J. C. Moore, Q. Yan, Y. Song, Z. Yang, W. Yuan, J. Chou, X. Cui, X. Yan, Z. Wei, Y. Guo, S. Yang, D. Tian, P. Lin, S. Yang, Z. Wen, H. Lin, M. Chen, G. Feng, Y. Jiang, X. Zhu, J. Chen, X. Wei, W. Shi, Z. Zhang, J. Dong, Y. Li, D. Chen, 2016, Quantitative estimation of the climatic effects of carbon transferred by international trade, Scientific Reports 6, 28046, doi:10.1038/srep28046

49.Yang, Z. T. Wei, J. C. Moore, J. Chou, W. Dong, R. Dai, S. Yang, and J. Ban 2016 A New Consumption-based Accounting model for Greenhouse Gases from 1948 to 2012, Journal of Cleaner Production, 133, 368-377, doi:10.1016/j.jclepro.2016.05.134

50.Kashimura, H., M. Abe, S. Watanabe, T. Sekiya, D. Ji, J. C. Moore, J.N.S. Cole and B. Kravitz 2017 Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate geoengineering: analysis of the Geoengineering Model Intercomparison Project G4 scenario, Atmospheric Chemistry and Physics 17, 3339-3356, doi:10.5194/acp-17-3339-2017, 2017.

51.Sugiyama, M., S. Asayama. A. Ishii; T. Kosugi, J. C. Moore, J. Lin, P.F. Lefale, W. Burns, M, Fujiwara, A. Ghosh, J. Horton, A. Kurosawa, A. Parker, M. Thompson, P-H. Wong, L. Xia 2017 The Asia-Pacific's role in the emerging climate engineering debate Climatic Change doi: 10.1007/s10584-017-1994-0

52.Stjern, C.W., H. Muri, L. Ahlm, O. Boucher, J.N.S. Cole, D. Ji, A. Jones, J. Haywood, B. Kravitz, A. Lenton, J.C. Moore, U. Niemeier, S.J. Phipps, H. Schmidt, S. Watanabe, J. E. Kristjánsson 2018 Response to marine cloud brightening in a multi-model ensemble Atmospheric Chemistry and Physics 18, 621-634, doi 10.5194/acp-18-621-2018.

53.Jones, A.C. M.K. Hawcroft, J.M. Haywood, A. Jones, X. Guo, and J.C. Moore 2018 Regional climate impacts of stabilizing global warming at 1.5 K using solar geoengineering, Earth’s Future 6 doi 10.1002/2017EF000720

54.McGuire, A.D., D.M. Lawrence, C. Koven, J.S. Clein, E. Burke, G. Chen, E. Jafarov, A.H. MacDougall, S. Marchenko, D. Nicolsky, S. Peng, A. Rinke, P. Ciais, I. Gouttevin, D.J. Hayes, D. Ji, G. Krinner, J.C. Moore, V. Romanovsky, C. Schädel, K. Schaefer, E.A.G. Schuur, and Q. Zhuang 2018 The dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change, Proceedings of the National Academy of Sciences doi10.1073/pnas.1719903115

Todellinen alku/loppupvm01.01.201531.12.2019


  • Chinese National Basic Research Fund: 1 900 000,00 €


  • Geotieteet
  • Kansainvälinen politiikka
  • Ympäristötiede
  • Fysiikka
  • Tilastotiede