Metabolism overrides photo‐oxidation in CO2 dynamics of Arctic permafrost streams

Gerard Rocher-Ros, Tamara K Harms, Ryan Sponseller, Maria Väisänen, Carl-Magnus Mörth, Reiner Giesler

Research output: Contribution to journalArticleScientificpeer-review

4 Citations (Scopus)

Abstract

Global warming is enhancing the mobilization of organic carbon (C) from Arctic soils into streams, where it can be mineralized to CO2 and released to the atmosphere. Abiotic photo-oxidation might drive C mineralization, but this process has not been quantitatively integrated with biological processes that also influence CO2 dynamics in aquatic ecosystems. We measured CO2 concentrations and the isotopic composition of dissolved inorganic C (δ13CDIC) at diel resolution in two Arctic streams, and coupled this with whole-system metabolism estimates to assess the effect of biotic and abiotic processes on stream C dynamics. CO2 concentrations consistently decreased from night to day, a pattern counter to the hypothesis that photo-oxidation is the dominant source of CO2. Instead, the observed decrease in CO2 during daytime was explained by photosynthetic rates, which were strongly correlated with diurnal changes in δ13CDIC values. However, on days when modeled photosynthetic rates were near zero, there was still a significant diel change in δ13CDIC values, suggesting that metabolic estimates are partly masked by O2 consumption from photo-oxidation. Our results suggest that 6–12 mmol CO2-C m−2 d−1 may be generated from photo-oxidation, a range that corresponds well to previous
laboratory measurements. Moreover, ecosystem respiration rates were 10 times greater than published photooxidation rates for these Arctic streams, and accounted for 33–80% of total CO2 evasion. Our results suggest that metabolic activity is the dominant process for CO2 production in Arctic streams. Thus, future aquatic CO2 emissions may depend on how biotic processes respond to the ongoing environmental change.
Original languageEnglish
Pages (from-to)S169-S181
JournalLimnology and Oceanogrpahy
Volume66
Issue numberS1
DOIs
Publication statusE-pub ahead of print - 24 Jul 2020
MoEC publication typeA1 Journal article-refereed

Field of science

  • Environmental sciences

Fingerprint

Dive into the research topics of 'Metabolism overrides photo‐oxidation in CO2 dynamics of Arctic permafrost streams'. Together they form a unique fingerprint.

Citation for this output